首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126146篇
  免费   9665篇
  国内免费   20145篇
化学   99764篇
晶体学   2716篇
力学   3332篇
综合类   1229篇
数学   17810篇
物理学   31105篇
  2024年   91篇
  2023年   1466篇
  2022年   1919篇
  2021年   3091篇
  2020年   3790篇
  2019年   3598篇
  2018年   3038篇
  2017年   4225篇
  2016年   4416篇
  2015年   3739篇
  2014年   5104篇
  2013年   10464篇
  2012年   8645篇
  2011年   7706篇
  2010年   6632篇
  2009年   9018篇
  2008年   9078篇
  2007年   9193篇
  2006年   8374篇
  2005年   7063篇
  2004年   6487篇
  2003年   5412篇
  2002年   4605篇
  2001年   3807篇
  2000年   3299篇
  1999年   2982篇
  1998年   2545篇
  1997年   2087篇
  1996年   1752篇
  1995年   1888篇
  1994年   1710篇
  1993年   1395篇
  1992年   1285篇
  1991年   917篇
  1990年   725篇
  1989年   674篇
  1988年   532篇
  1987年   400篇
  1986年   352篇
  1985年   322篇
  1984年   325篇
  1983年   164篇
  1982年   266篇
  1981年   241篇
  1980年   237篇
  1979年   230篇
  1978年   193篇
  1977年   135篇
  1976年   104篇
  1973年   70篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Precise design and tuning of the micro-atomic structure of single atom catalysts (SACs) can help efficiently adapt complex catalytic systems. Herein, we inventively found that when the active center of the main group element gallium (Ga) is downsized to the atomic level, whose characteristic has significant differences from conventional bulk and rigid Ga catalysts. The Ga SACs with a P, S atomic coordination environment display specific flow properties, showing CO products with FE of ≈92 % at −0.3 V vs. RHE in electrochemical CO2 reduction (CO2RR). Theoretical simulations demonstrate that the adaptive dynamic transition of Ga optimizes the adsorption energy of the *COOH intermediate and renews the active sites in time, leading to excellent CO2RR selectivity and stability. This liquid single atom catalysts system with dynamic interfaces lays the foundation for future exploration of synthesis and catalysis.  相似文献   
992.
Exploring new porous coordination polymers (PCPs) that have tunable structure and conductivity is attractive but remains challenging. Herein, fine pore structure engineering by ligand conformation control of naphthalene diimide (NDI)-based semiconducting PCPs with π stacking-dependent conductivity tunability is achieved. The π stacking distances and ligand conformation in these isoreticular PCPs were modulated by employing metal centers with different coordination geometries. As a result, three conjugated PCPs (Co−pyNDI, Ni−pyNDI, and Zn−pyNDI) with varying pore structure and conductivity were obtained. Their crystal structures were determined by three-dimensional electron diffraction. The through-space charge transfer and tunable pore structure in these PCPs result in modulated selectivity and sensitivity in gas sensing. Zn−pyNDI can serve as a room-temperature operable chemiresistive sensor selective to acetone.  相似文献   
993.
Herein, we first design a model of reversible redox-switching metal–organic framework single-unit-cell sheets, where the abundant metal single sites benefit for highly selective CO2 reduction, while the reversible redox-switching metal sites can effectively activate CO2 molecules. Taking the synthetic Cu-MOF single-unit-cell sheets as an example, synchrotron-radiation quasi in situ X-ray photoelectron spectra unravel the reversible switching CuII/CuI single sites initially accept photoexcited electrons and then donate them to CO2 molecules, which favors the rate-liming activation into CO2δ−, verified by in situ FTIR spectra and Gibbs free energy calculations. As an outcome, Cu-MOF single-unit-cell sheets achieve near 100 % selectivity for CO2 photoreduction to CO with a high rate of 860 μmol g−1 h−1 without any sacrifice reagent or photosensitizer, where both the activity and selectivity outperform previously reported photocatalysts evaluated under similar conditions.  相似文献   
994.
Borophene, a two-dimensional (2D) planar boron sheet, has attracted dramatic attention for its unique physical properties that are theoretically predicted to be different from those of bulk boron, such as polymorphism, superconductivity, Dirac fermions, mechanical flexibility and anisotropic metallicity. Nevertheless, it has long been difficult to obtain borophene experimentally due to its susceptibility to oxidation and the strong covalent bonds in bulk forms. With the development of growth technology in ultra-high vacuum (UHV), borophene has been successfully synthesized by molecular beam epitaxy (MBE) supported by substrates in recent years. Due to the intrinsic polymorphism of borophene, the choice of substrates in the synthesis of borophene is pivotal to the atomic structure of borophene. The different interactions and commensuration of borophene on various substrates can induce various allotropes of borophene with distinct atomic structures, which suggests a potential approach to explore and manipulate the structure of borophene and benefits the realization of novel physical and chemical properties in borophene due to the structure–property correspondence. In this review, we summarize the recent research progress in the synthesis of monolayer (ML) borophene on various substrates, including Ag(1 1 1), Ag(1 1 0), Ag(1 0 0), Cu(1 1 1), Cu(1 0 0), Au(1 1 1), Al(1 1 1) and Ir(1 1 1), in which the polymorphism of borophene is present. Moreover, we introduce the realization of bilayer (BL) borophene on Ag(1 1 1), Cu(1 1 1) and Ru(0 0 0 1) surfaces, which possess richer electronic properties, including better thermal stability and oxidation resistance. Then, the stabilization mechanism of polymorphic borophene on their substrates is discussed. In addition, experimental investigations on the unique physical properties of borophene are also introduced, including metallicity, topology, superconductivity, optical and mechanical properties. Finally, we present an outlook on the challenges and prospects for the synthesis and potential applications of borophene.  相似文献   
995.
996.
A method development aimed for high-throughput and automated antibody screening holds great potential for areas ranging from fundamental molecular interactions to the discovery of novel disease markers, therapeutic targets, and monoclonal antibody engineering. Surface display techniques enable efficient manipulation of large molecular libraries in small volumes. Specifically, phage display appeared as a powerful technology for selecting peptides and proteins with enhanced, target-specific binding affinities. Here, we present a phage-selection microfluidic device wherein electrophoresis was performed under two orthogonal electric fields through an agarose gel functionalized with the respective antigen. This microdevice was capable of screening and sorting in a single round high-affinity phage-displayed antibodies against virus glycoproteins, including human immunodeficiency virus-1 glycoprotein 120 or the Ebola virus glycoprotein (EBOV-GP). Phages were differentially and laterally swept depending on their antigen affinity; the high-affinity phages were recovered at channels proximal to the application site, whereas low-affinity phages migrated distal after electrophoresis. These experiments proved that the microfluidic device specifically designed for phage-selection is rapid, sensitive, and effective. Therefore, this is an efficient and cost-effective method that allowed highly controlled assay conditions for isolating and sorting high-affinity ligands displayed in phages.  相似文献   
997.
The factors/structural features which are responsible for the binding, activation and reduction of N2 to NH3 by FeMoco of nitrogenase have not been completely understood well. Several relevant model complexes by Holland et al. and Peters et al. have been synthesized, characterized and studied by theoretical calculations. For a matter of fact, those complexes are much different than real active N2-binding Fe-sites of FeMoco, which possesses a central C(4-) ion having an eight valence electrons as an μ6-bridge. Here, a series of [(S3C(0))Fe(II/I/0)-N2]n- complexes in different charged/spin states containing a coordinated σ- and π-donor C(0)-atom which possesses eight outer shell electrons [carbone, (Ph3P)2C(0); Ph3P→C(0)←PPh3] and three S-donor sites (i.e. -S-Ar), have been studied by DFT, QTAIM, and EDA-NOCV calculations. The effect of the weak field ligand on Fe-centres and the subsequent N2-binding has been studied by EDA-NOCV analysis. The role of the oxidation state of Fe and N2-binding in different charged and spin states of the complex have been investigated by EDA-NOCV analyses. The intrinsic interaction energies of the Fe−N2 bond are in the range from −42/−35 to −67 kcal/mol in their corresponding ground states. The S3C(0) donor set is argued here to be closer to the actual coordination environment of one of the six Fe-centres of nitrogenase. In comparison, the captivating model complexes reported by Holland et al. and Peter et al. possess a stronger π-acceptor C-ring (S2Cring donor, π-C donor) and stronger donor set like CP3 (σ-C donor) ligands, respectively.  相似文献   
998.
金属有机骨架(MOF)材料由于其孔隙率高、比表面积大以及具有发达的内联通孔道结构等优点,可以作为优良的生物分子固定化载体。通过表面活性自组装策略制备了铈基介孔MOF(Ce-MOF-F),表征结果表明,该材料有大的比表面积和呈辐射状的介孔孔道结构。以其为载体、南极假丝酵母脂肪酶B(CALB)为模型酶,通过物理吸附法制备了生物催化剂CALB@Ce-MOF-F,对该固定化酶的酶载量和催化性能进行了研究。在优化条件下,CALB的负载量为162.0mg/g载体,水解活性为899.1U/g蛋白。与游离CALB相比,CALB@Ce-MOF-F表现出对高温、酸碱和有机溶剂等有更强的耐受性;将Ce-MOF-F用于多种酶的固定化,研究其作为载体的普适性,结果表明,介孔Ce-MOF-F对洋葱伯克氏菌脂肪酶(BCL)和漆酶有良好的固定效果,可以作为良好载体,并能对酶起到较好的保护作用。  相似文献   
999.
Solar-to-chemical energy conversion under weak solar irradiation is generally difficult to meet the heat demand of CO2 reduction. Herein, a new concentrated solar-driven photothermal system coupling a dual-metal single-atom catalyst (DSAC) with adjacent Ni−N4 and Fe−N4 pair sites is designed for boosting gas-solid CO2 reduction with H2O under simulated solar irradiation, even under ambient sunlight. As expected, the (Ni, Fe)−N−C DSAC exhibits a superior photothermal catalytic performance for CO2 reduction to CO (86.16 μmol g−1 h−1), CH4 (135.35 μmol g−1 h−1) and CH3OH (59.81 μmol g−1 h−1), which are equivalent to 1.70-fold, 1.27-fold and 1.23-fold higher than those of the Fe−N−C catalyst, respectively. Based on theoretical simulations, the Fermi level and d-band center of Fe atom is efficiently regulated in non-interacting Ni and Fe dual-atom pair sites with electronic interaction through electron orbital hybridization on (Ni, Fe)−N−C DSAC. Crucially, the distance between adjacent Ni and Fe atoms of the Ni−N−N−Fe configuration means that the additional Ni atom as a new active site contributes to the main *COOH and *HCO3 dissociation to optimize the corresponding energy barriers in the reaction process, leading to specific dual reaction pathways (COOH and HCO3 pathways) for solar-driven photothermal CO2 reduction to initial CO production.  相似文献   
1000.
Let H be a Schr(o)dinger operator on Rn. Under a polynomial decay condition for the kernel of its spectral operator, we show that the Besov spaces and Triebel-Lizorkin spaces associated with H are well defined. We further give a Littlewood-Paley characterization of Lp spaces in terms of dyadic functions of H. This generalizes and strengthens the previous result when the heat kernel of H satisfies certain upper Gaussian bound.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号